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 Deep Convolution Neural Network (CNN) algorithm have recently gained 

popularity in many applications such as image classification, video analytic, 

object recognition and segmentation. Being compute-intensive and memory 

expensive, CNN computations are common accelerated by GPUs with high 

power dissipations. Recent studies show implementation of CNN on FPGA 

and it gain higher advantage in term of energy-efficient and flexibility over 

Software-configurable-GPUs. The proposed framework is verified  

by implement Tiny-YOLO-v2 on De1SoC. The design development in this 

project is HLS approach to ease effort from writing complex RTL codes and 

provide fast verification through emulation and profiling tools provided  

in the OpenCL SDK. To best of our knowledge, this is the first 

implementation of Tiny-YOLO-v2 CNN based object detection algorithm on  

a small scale De1SoC board using Intel FPGA SDK for OpenCL approach. 
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1. INTRODUCTION  

Convolutional neural network (CNN), as a well-known deep learning architecture inspired  

by artificial neural network, has been primarily employed in various applications including image [1, 2] and 

video classification [3], text recognition [4], speech recognition [5] and object detection [6-8].  

The state-of-the-art CNN based algorithms usually consist millions of parameters that require over billion 

operations to process a single image. This is a great computational challenge for general purpose processors 

(CPU) to implement CNN-based applications efficiently. Thus, various accelerator such as GPU,  

FPGA and ASIC have been explored recently to improve the throughput of CNN designs. Currently,  

FPGA have received huge attention of researchers due to their relatively high performance,  

low power consumption, reconfigurability and fast development round, especially with the introduction  

of High Synthesis Tool (HLS), which enable automatic compilation from high-level program (C/C++)  

to register-transfer-level (RTL) [9-11].  

Previous FPGA-based CNN accelerator designs [9-11] mainly focused on optimizing  

the performance and computational resources only on classification CNN-based algorithms such as AlexNet 

[1] and VGG [2]. This research focus on developing CNN-based object detection algorithm Tiny-YOLO-v2 

that can run on FPGA accelerator, De1SoC. In contrast to classification task, object detection localizes and 

classify a variable number of objects on an image which indicates that the output of object detection may 

change from image to image. This is a great challenge to fit computational intensive and memory intensive 

object detection algorithm: Tiny-YOLO-v2 into De1SoC board which has very limited hardware resources.  

To the best of our knowledge, this research is the first CNN-based detection algorithm implemented  

on FPGA, De1SoC using Intel FPGA SDK for OpenCL approach. We summarize the key contributions  
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as follows: A scalable CNN-based object detection algorithm Tiny-YOLO-v2 that can run on De1SoC using 

Intel FPGA SDK for OpenCL version 16.1.A novel approach to do the data rearrangement-on-flight  

to eliminate the need to store the computed output to reduce the memory requirement for hardware.  

In depth analysis on Tiny-YOLO-v2 and identify the computational and memory complexity. 

 

OpenCL Framework 

Intel FPGA SDK for OpenCL allows user to abstract away the traditional hardware FPGA 

development flow by using high-level synthesis tools. It is an alternative approach to traditional RTL design 

concept such as Verilog or VHDL with C or C++ synthesis. Figure 1 illustrates the OpenCL-based FPGA 

accelerator development flow. In the OpenCL framework for SoC specifically, the CPU, in our case,  

is the ARM Cortex-A9 acts as the OpenCL host and it has bridges interconnect the Cyclone V which it serves 

as an OpenCL device, forming a heterogeneous computing system. An OpenCL code, which is written in 

C/C++ like syntax, is translated into hardware image, supported by OpenCL runtime driver.  

Furthermore, on the host side (ARM), C/C++ code runs on the CPU, providing vendor specific application 

programming interface (API) to communicate with the implemented kernels on the Cyclone V accelerator.  

This work utilizes Intel FPGA for OpenCL v16.1 toolset for compiling, emulation and profiling kernels  

on FPGA. 
 
 

 
 

Figure 1. OpenCL-based FPGA development flow 
 

 

CNN Basic Operations 

Convolutional neural network (CNN) is first inspired by the visual cortex of mammals  

in neuroscience research. It is a machine learning algorithm well suited for both classification and object 

detection task. As a classical supervised learning algorithm, CNN applies a feed-forward stage for object 

classification or detection, whereas a backward stage for training. During training, the ground truth outputs 

are known, and the error is computed between the correct and computed output. The error is then used  

to back-propagate through the network. In industrial practice, the training process is usually trained offline 

and the trained CNN network will be used to perform recognition jobs. Figure 2 shows the architecture  

of Tiny-YOLO-v2 [8], which consists of 9 convolutional layers, each with a leaky rectified linear unit 

(ReLU) based activation function and batch normalization operation interspersed with 6 max-pooling layers 

and a region layer. Tiny-YOLO-v2 takes input image size 416x416 to 20 output classes. 
 

 

 
 

Figure 2. Architecture of Tiny-YOLO CNN  
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Convolutional Layer 

The convolutional layer is the core functional layer of a Deep Neural Network architecture.  

Previous study [12] proved that the convolutional layer will occupy over 90 % of the feed-forward 

computation period. Hence, in this work, we will focus the optimization on the convolutional layer. 

Convolutional layer applies the convolution operation to the image input and pass the result to the next layer. 

The convolutional operation in CNN model can be expressed as follows: 
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where:   Y = Output Feature 

 W= Trained Weights 

 X=Input Feature 

Activation Functions 

Activation function in a CNN architecture is used to transform the input value to the output value 

before the pooling layer. Sigmoidal activation functions were most often used in CNN are bounded  

by a maximum and minimum value and thereby causing the saturated neuron in higher layers of neural 

network. Alternatively, rectifier linear units (ReLU) have been proposed as an activation function.  

Leaky ReLU Figure 3 in contrast to sigmoidal functions are unbound and it can represent any non-negative 

real value. 

 

 

 
Figure 3. Leaky activation function 

 

 

Pooling Layer 

Pooling layer in general is a form of dimensionally reduction used in CNN. Its goal is to throw away 

unnecessary information and only preserve the most critical information. Typical pooling functions  

are maximum pooling and average pooling layer. Max pooling returns the maximum value from the input, 

where average pooling returns the average value. The formula of max-pooling is illustrated as following: 

 

}',':]',;[max{],[ pjjjiiijiSjiS   (2) 

 
}',':]',;[{],[ pjjjiiijiSaveragejiS   (3) 

Batch Normalization 

Batch normalization is implemented in the convolutional layer to provide any layer in  

Tiny-YOLO-v2 with inputs that are zero mean/unit variance. that the formula for the batch normalization 

Shows (4). This operation is carried out after the convolution operation and before the activation function.  

The input layer is normalized by adjusting and scaling the activations. Batch normalization allows each layer 

to learn in more independent way. This helps to reduce the overfitting because it has a slight regularization 

effects similar to the dropout. 
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The rest of the paper is organized as follows. Section 2 presents a detailed case study  

on computational and memory complexity of Tiny-YOLO-v2 and a detailed description on the proposed 

accelerator design using General Matrix-Matrix Multiplication (GeMM). Section 3 presents  

the experimental results and the resource utilization report of our CNN object detection design a  

section 4 concludes the paper.  

 

 

2. RESEARCH METHOD  

2.1.  YOLO object detection algorithm 

In this section, we present a detail exploration on the Yolo object detection framework. Prior object 

detection algorithm repurpose classifiers of localizers to perform detection [6]. These classifiers/localizers 

are applied to an image at multiple location and various scales. However, Yolo [7, 8] uses a totally different 

approach to apply a single convolutional network to the full image and predict multiple bounding boxes and 

class probability for those boxes. This makes Yolo is extremely fast which can run at 45 frames per second 

on a TitanxGPU. Figure 4 illustrated how object detection task is reframed as some single regression problem 

straight form image pixels to bounding box coordinates and class probabilities. The input image  

is divided into S×S grid. Each grid cell predicts B bounding boxes, confidence for those boxes and C class 

probabilities. These predictions are encoded as an SS×(B*5+C). 

 

 

 
 

Figure 4. YOLO object D=detection algorithm 

 

 

2.2.  Analysis of computational complexity of Tiny-YOLO-v2 

In this section, we present an analysis on the computational complexity and the memory 

requirement of Tiny YOLO-v2. In convolutional layer, each input feature map is convolved with a sliding 

window/filter with size K×K, which resulting in a Hout×Wout output feature map. The number of input and 

output is Nin, Nout respectively. Notice that each pixel in an output feature map is the result of addition  

of Nin pixels that requires K×K of multiplications and additions operations. The total amount of operations  

in convolution layer can be approximately calculated as shown in (5). Noted that, this equation ignores 

number of operations for the batch normalization and leaky activation for each layer. 
 

.2# WoutHoutNoutKKNinOperations   (5) 
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The memory requirement is described with space complexity. The main parameter in the Tiny 

YOLO-v2 is the weight which is used in the convolutional layer. The number of weight in the convolutional 

layer can be expresses as: 
 

.# NoutKKNinWeights   (6) 

 
Both computational complexity and memory requirement for 9 layers of convolutional layer  

of Tiny-YOLO-v2 is summarized in Table 1. Noted that, Tiny-YOLO-v2 takes approximately 7.3 billion 

operations with 15 million of weights just for one image input. 

 

 

Table 1. Tiny-YOLO-v2 configurations 

Layer 
Input Output 

#Operations #Weights 
Nin Hin Win K Nout Hout Wout 

1 3 416 416 3 16 416 416 149,520,384 432 

2 16 208 208 3 32 208 208 398,721,024 4,608 

3 32 104 104 3 64 104 104 398,721,024 18,432 
4 64 52 52 3 128 52 52 398,721,024 73,728 

5 128 26 26 3 256 26 26 398,721,024 294,912 

6 256 13 13 3 512 13 13 398,721,024 1,179,592 
7 512 13 13 3 1024 13 13 1,594884,096 4,718,592 

8 1024 13 13 3 1024 13 13 3,189,768,192 9,438,184 

9 1024 13 13 3 125 13 13 43,264,400 128,000 

 

 

2.3.  Implementation of 3D convolution as GeMM 

CNN employs a feedforward process for object detection, involving billions of multiplication  

and addition operations. Noted that the convolution operation essentially performs multiplication  

and accumulate operations between the filters and local regions of input. To take advantage of this,  

we implemented GeMM based convolution like [11, 13]. In fact, GeMM based convolution approach is also 

been practiced in GPU based accelerator for CNN classification [1, 2] and object detection task [7, 8].  

Figure 5 shows that how the first layer of convolution layer (3D) is flattening and rearranged vertically into  

a 2D matrix through im2col process. For example, the dimension of the input layer for  

Tiny-YOLO-v2 is 416 ×416×3 (Hin×Win Nin) and the size of kernel is 3×3 (K×K). The Im2Col operation 

flatten 3D input layer dimension (416×416×3) and rearrange vertically into a 2D matrix of dimension  

416×416×3×3×3. 

 

 

 
 

Figure 5. Im2Col operation 

 

 

 Notice that the im2col operation comes at the cost. It causes the expansion in memory size  

if the stride is smaller than the kernel size as pixels are overlapping and duplicated in the matrix.  

The expansion of memory increases the memory requirement to store the rearranged input feature matrix. 

Hence, we proposed the pseudo code as shown in Figure 6 to perform the im2col operation on-the-fly  

by storing the corresponding pixels into FPGA’s local memory before the matrix multiplication. 

Implementation of convolution as GeMM a shown in Figure 7. 
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Figure 6. Pseudo code Im2Col on-fly 
 

 

 
 

Figure 7. Implementation of convolution as GeMM 
 

 

The weights of the convolution layer are also stretched out into rows. As an example,  

Figure 7 illustrates that convolution can be done by performing one large matrix-matrix multiplication 

[sizexsize]. The pseudo code for the matrix multiplication-based convolution in our proposed design  

is shown in Figure 8. To accelerate the GeMM operation, two scalable design parameters BLOCK_SIZE and 

SIMD vectorization factor is introduced. SIMD is representing the factor by which data are vectorized and 

executed in SIMD manner. This parameter is scalable depends on the resources available in FPGA.  

The performance of the object detection is determined by choosing an appropriate of SIMD and 

BLOCK_SIZE factor. 

 

 

 
 

Figure 8. Pseudo code of proposed GeMM convolution 

 

 

2.4.  Data preprocessing 

According to (4), part of the computation in batch normalization involves division.  

However, division operators are very expensive to implement in FPGAs and might degrade kernel 

performance [14]. In addition, the implementation of division requires a significant amount of hardware 

resources. Since Tiny-YOLO-v2 applies a feedforward process for object detection and a backward path for 

training. The network is commonly trained offline and the parameters of σ and β are to be learned during  

the training process and these values are only load once during the inference process. Hence, it is more 

reasonable offload the division operation to the host processor and then pass the result as an argument  

to the kernel. Hence, the (4) above is slightly modified as shown in (7). To avoid  

the redundancy and hardware resource-intensive operation (division), the following calculation for value β  

is performed in the host application and then β is passed to the kernel as an argument for all work-items  

in ND Range to use. 
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3. RESULTS AND ANALYSIS 

In this section, we first present the validation results of proposed architecture developed using 

OpenCL16.1 Intel FPGA SDK HLS to accelerate the large-scale CNN-based object detection algorithm: 

Tiny-YOLO-v2 on FPGA board. The hardware specification of the Cyclone V board is summarized  

in Table 2. 

 

 

Table 2. Harware specification of FPGA board 
Specification De1SoC Board 

FPGA Cyclone V 5CSEMA5F31C6 

HPS Dual Core ARM Cortext-A9 

Logic Element 85k 
RAM Blocks 397 

DSP Blocks 87 

External Memory 1GB DDR3 

 

 

Secondly, the best performance for the runtime used the parameter configuration BLOCK_SIZE=16 

and SIMD=2. Note that it is the best configuration for De1SoC to fit for best performance, as logic resource 

is very limited. The resource utilization of proposed architecture is summarized in Table 3.  

According to the report, we can tell that our proposed architecture has almost utilized all the available 

FPGA’s hardware resource. 

 

 

Table 3. Resource utilization 
Resource Available Used Utilization 

Logic (AMs) 32070 29186 91% 
RAMs 397 391 98% 

DSPs 87 87 100% 

 

 

The execution time of the CNN layers in Tiny-YOLO-v2 implemented on De1SoC is illustrated  

in Figure 9. It is noted that the final classification time without kernel profiling will be significantly lower  

as shown in Figure 9 due to the delay involved in generating the profiling report. The total detection time  

per image using the proposed architecture is 1.40 second, achieving around 5.2 GFLOPs throughput  

on De1SoC. It is expected that the proposed architecture can achieve much higher throughput on other  

large-scale FPGA boards: Stratix and Aria FPGA board. 

 

 

 
 

Figure 9. Pseudo code of proposed GeMM convolution 
 

 

Thirdly, we present on the how data preprocessing mentioned in previous section will help to utilize 

the hardware resources on FPGA. As we mentioned, De1SoC board has limited available hardware resources 

to implement large scale CNN-based object detection algorithm such as Tiny-Yolo-v2. Hence, by modifying 

the equation listed in (4) into (7) to offload part of expensive computation operations such as division and 

modulus to be done in host program helps to save up to 11% logic element consumption. This leads  

to significant improvement to the object detection performance, as more resources can be used to further 

scale up the proposed architecture. The hardware resource utilization using data preprocessing approach  

is summarize in Table 4.  
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Table 4. Resource utilization using data preprocessing 
Resource (4) (7) Utilization 

Logic (AMs) 97% 88% 11% 

ALUTs 60% 54% 6% 

FFs 42% 38% 4% 
RAMs 101% 88% 13% 

DSPs 93% 84% 9% 

 

 

Figure 10 shows the design space exploration for Tiny-YOLO-v2 model on De1SoC. It shows that  

the resource utilization increases around 10% when we increase the BLOCK_SIZE parameter in scale  

of multiple 4. At the same time, the execution time to inference on input image is improved from 4.16s  

to 1.40s by increasing the BLOCK_SIZE parameters. Currently, due to the limited hardware resource  

on De1SoC, BLOCK_SIZE=32 and SIMD=4 is too large to fit in the FPGA device and is not reported.  

All the object in the image is correctly detected without hurting the detection accuracy when the proposed 

architecture is scaled from BLOCK_SIZE=4 to BLOCK_SIZE=16. 

 

 

 
 

Figure 10. Design space exploration 

 

 

4. CONCLUSION  

In this work, we implemented GEMM based convolution method for convolutional neural network 

object detection algorithm: Tiny-YOLO-v2. We then present in-depth analysis on Tiny-YOLO-v2 

computational and memory complexity. We also implemented im2col operations on-fly during data fetching 

stage in kernel. Finally, we realize the implementation the first CNN-based object detection algorithm  

on De1SoC. 
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